第四百四十四章 素数无限的证法(第1/2页)
章节报错
444章
关于“素数有无穷多个”的证明方法,目前最被认可的是数学家欧里几得在《几何原本》第9卷的第20个命题列出的证明过程。
因此,这一命题也因此被称为了“欧几里德定理”。
欧里几得的证法很简单,也很平凡,因此得以进入初等数学的课堂。
他首先是假设素数是有限的,假设素数只有有限的n个,最大的一个素数是p。
然后设q为所有素数之积加上1,那么,q=(2x3x5x…xp)+1不是素数,那么,q可以被2、3、…、p中的数整除。
而q被这2、3、…、p中任意一个整除都会余1,与之矛盾。所以,素数是无限的。
这个古老而又简便的证明法,即便时隔两千多年,都无法否认它的强大。
…………
“我觉得既然是比数量的话,那我们最好就在欧里几得的证明法的基础上进行变种,这样浪费的时间估计会少一点。”
“嗯,我也这么觉得,毕竟我们只有半个小时的时间,我们三个至少每个人要想出来一个变种才有获胜的希望。”
“不不不,三个绝对不够,其他学校也不都是一些无能之辈,我觉得要争前三的话,起码五个更稳妥!我们最多用二十分钟的时间各自想出一个变种,然后我们三人最后十分钟再合力看看还有没有什么其他的思路。”
“好吧,那就这样。”
两位队友在激烈的讨论着。在达成了一致意见后,便齐齐扭头看向程诺。
“程诺,你没问题吧?”虽然时间紧迫,但两人还是想问一下程诺的意见。
“呃……,有一句话,我不知道当讲不当讲。”程诺挠挠头道。
两人一愣,回道,“但说无妨。”
“我们为什么非要琢磨欧里几得证明法的变种,而不去寻找新的方向进行证明呢?”程诺问道。
程诺的话把两人问的哑口无言。
他们又何尝不想去寻找另一个证明素数无穷命题的新方向。
但这是在比赛,不是在搞研究。
而衡量的标准是数量,也并非是质量。
在欧里几得证明法的基础上进行变种,就像于是站立在巨人的肩膀上,无论是研究难度,还是研究时间,都会大大缩减。
而寻找另一种证明方向,说起来简单,但那可是一个从无到有的过程,艰辛无比。并且失败的可能性极高。
两人没有那勇气,也没有那信心尝试去做那个开拓者。
队友苦笑,“不是我们不想,而实在是我们没有那底气说有那实力去做。就算我们三人合力,半小时的时间也未必能找到一个新的方向去证明素数无穷命题。”
程诺耸耸肩,笑道,“不啊,我现在脑子里就有许多新想法。”
两人默默对视一眼,皆是怀疑程诺话语的真实性。
一人狐疑的问道,“程诺同学,那能不能随便给我们举几个栗子?”
程诺往篝火中心挪了挪,换了个舒服的坐姿,慢悠悠的开口,“当然没问题。”
程诺竖起了一根手指,“第一个,利用互素序列进行证明。”
两人也很好奇程诺究竟会说些什么,竖起耳朵倾听。
“你们想一下,假如能找到一个无穷序列,其中任意两项都是互素的,即所谓互素序列,那就等于证明了素数有无穷多个——因为每一项的素因子都彼此不同,项数无穷,素因子的个数、从而素数的个数,自然也就无穷。”
“那什么样的序列既是无穷序列又是互素序列?”一人忍不住问道。
程诺打了响指,笑呵呵的开口说道,“其实这个序列你们应该都听说过,数学家哥德巴赫在给数学家欧拉的一封信中,提到了一个完全由费马数:fn=2^2^n+1(n=0,1,...)组成的序列这个概念,通过fn-2=f0f1···fn-1这个公式,可以证明费马数之间是彼此互素的。”
“以上,利用费马数组成的序列,就可以轻松得到素数无限的一个证明法。”程诺语气停顿了一下,开口说道,“下面我说第二个。”
“等一下!”一位队友大声叫停了程诺,急忙从背后的书包里拿出一摞草稿纸,将程诺提出的第一个证明法记下以后,才不好意思的对程诺说道,“你继续吧。”
他这么大声,自然引起了旁边许多学校的注意。
于是当众人看到剑桥大学这边两位天资横溢的博士生,此时却宛若小学生一般,仰着头期待着那边程诺讲话,皆是一脸的疑惑之色。
但时间紧迫,众人的视线只是在剑桥大学的队伍上停留了几秒时间,便匆匆接着自己的埋头苦算。
“呃,那我接着说。”程诺接着说道,“我第二个想出的办法是利用素数的分布进行求证。”
“法国数学家阿达马和比利时数学家瓦莱-普森于1896年证明的素数定理中指出,n以内的素数