并没有获得老板的满意,虽说并不影响基石材料公司的运营,更不影响他的位置,但是这个表现机会没有了总是让人不愉快的。

“行,我这就回去做好安排,等安排好后,我会告诉您的秘书。”闻省答应道。

随后,赵一算是临时加入到这个项目组中来,对这种光伏陶瓷釉进行深入的分析,只有对这个陶瓷釉的结构和原理分析透彻了,才好进行下一步的动作。

好在这些基础性的工作,项目组已经做得非常扎实了,赵一只需要将这些实验数据调出来,通过模拟软件进行模拟就可以看得一目了然。

等了解了这种材料的具体结构,以及为什么它的光电转化率高的原因后,赵一就开始使用自己的计算材料学知识,从新设计了一份材料目标。

等他重新设计了一种材料之后,再放到智能材料分析和计算模拟系统里面进行模拟计算,结果表现出来的效果比项目组原来的陶瓷釉更加优秀。

根据模拟结果显示,这种赵一设计出来的涂层材料不仅将光电转化效率提高到了60%,同时表现出来的耐用性和稳定性也非常突出。

由于特殊建筑菌种和特殊油漆的使用,可以让中国房屋公司的使用年限变得非常长,如果这种用在建筑外墙墙壁上的涂料不耐用或者不稳定,就是一个非常糟糕的事情了。

当赵一亲自设计的材料模拟出来后,项目组的所有成员,对于赵一的崇拜更是滔滔不绝,之前只是传闻,现在这个传奇真的站在了自己面前,并且刚刚就完成了一项壮举。

不过赵一并没有因此感觉到欢欣鼓舞,毕竟这只是万里长征的第一步,只是表明了这种设计结构的材料可以表现出来这种理想的效果。

但是怎么生产制备这种材料才是非常关键的步骤,制造不出来,那么这种材料表现的再优秀也是于事无补。

所以接下来就是对这种材料反向推演,不过智能材料分析计算模拟系统就有这样的功能,只是这样的功能并不能够保证推理出来的过程会百分百表现的正确。

所以接下来的任务就交给了这些项目组的研究人员来操作了,这种体力活,赵一是不打算自己干的。

将这些体力活交给了项目组成员之后,赵一就开始思考储能的问题,现在能够储能的基本上都是电池产品了。

他之所以考虑这个问题,就是需要一款储能非常大的设备,对光伏涂层发出来的电能进行存储的,不然的话,这些白天发出来的电就会白白的浪费了。

正常情况下,白天居民家里是很少使用电的,而这个时候恰恰是光伏发电的最好时间段了,等晚上用电高峰的时候,光伏发电时间段反而是最差的。

想要解决这种需求和生产不匹配的现象,就需要用到储能设备来解决了,但是电池产品不说能量存储密度的问题,就是成本也会非常高昂。

所以使用传统的电池产品来进行储能,赵一觉得不是一个好的办法,即使他有能力研发出来一款能量存储密度非常高的电池出来,那么成本也会非常高。

而且他们存储的电能是用来居民日常使用的,而不是用在电子产品上的,那就要求具有非常大的放电能力,不然的话,根本就带不动居民的电器运转起来。

那么电容储能就进入了他的视野,不过相比起传统的电容储能,他更加青睐基于石墨烯材料而制作的超级电容储能设备。

其实这种石墨烯超级电容的原理并不复杂,就是利用石墨烯良好的导电性,实现比常规电池充电和放点速度快成百上千倍。

同时又利用石墨烯的单层原子结构,可以大幅度提高表面积,这样就可以储备更多的电能,实现高能量密度。

所以原理并不难,难得是怎么能够快速稳定的生产出来满足需要的石墨烯材料,只要这个方面进行了突破,那么其他的任务交给下面的研究人员就可以了。

而且这种石墨烯超级电容的应用范围非常广泛,不仅仅只是满足于和光伏涂层配套的储能需要,还能够解决国家电网的用电错峰调节问题。

更重要的是,使用这种石墨烯超级电容制作的电池,应用也非常广泛,小到电子产品,大到汽车上面,都可以使用的上。

只是之前赵一对于石墨烯电容没有什么需求,因为目前的石油还是蛮便宜的,他也就没有打算直接上马电动汽车项目,至于其他的储能需求,可以使用其他的方式进行。

最简单的石墨烯超级电容,采用的是双电层电容结构,具体原理就是在电解质当中插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压。

这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层。

所以想要获得高能量密度的石墨烯电容,不仅仅只是石墨烯材料,还需要一种非常好的电解质材料。

于是针对这两个问题,赵一就开始进行相关的研究工作,首先要解决的就是石墨烯的大规模制备问题,这个问