满足两个简单条件的正整数组(a,b,c)。其中第一个条件是a和b互素,第二个条件是a+b=c。

显然,满足这种条件的正整数组——比如(3,8,11)、(16,17,33)……——有无穷多个。为了引出abc猜想,以(3,8,11)为例,做一个“三步走”的简单计算:

1将a、b、c乘起来(结果是3x8x11=264);

2对乘积进行素数分解(结果是264=23x3x11);

3将素数分解中所有不同的素数乘起来(结果是2x3x11=66)。

现在,将a、b、c三个数字中较大的那个(即c)与步骤3的结果比较一下,便会发现后者大于前者。如果随便找一些其它例子,也很可能发现同样的结果。

但这并不是一个规律,存在的反例数不胜数,如(3,125,128)等,但将3的结果加上一个大于1的幂,那存在反例的数目便会由无限变得有限。

简单来说,abc猜想是一个允许存在反例的猜想。

因此,那种使用超算寻找反例证明猜想的办法,在这个难题上根本就不适用。

而看完题目后,程诺拿出一张草稿纸,在上面写写画画一阵。

半小时后,只能颓然一叹,“难啊!”

果然,这种世界级猜想,不是啥妖艳jian货就能上的。

这个猜想,果真是很有料!

没有头绪,没有任何头绪。

程诺没有看书中后面关于几位数学大佬对这个猜想的分析,他单独尝试了一波,却发现全线溃败。

他根本找不到任何的突破口,去攻克这个猜想。

难受啊!

www.。m.