g:m→r^l,h:m→r^n

程诺扫了一眼,恍然大悟一声,“lipschitz函数?!”

菲涅尔教授瞥了一眼程诺,目光带着一丝赞赏,“准确的说,是局部lipschitz函数!”

lipschitz函数,是指若f(x)在区间i上满足对定义域d的任意两个不同的实数x1、x2均有:∥f(x1)-f(x2)∥<=k∥x1-x2∥成立,必定有f(x)在区间i上一致连续.

程诺心中,已经大概明白了这个项目菲涅尔教授的破题点是什么了。

菲涅尔教授继续他的理论讲解,“在这个公式中,我们可以把m当做一个m维的黎曼流形。”

“艾顿可的那篇关于hilbert空间中mp问题的论文,你们两个都应该有读到过吧?”

两人同时点头。

“那就好了,类比一下,我们就可以把mp问题从线性的空间扩展到微分流形上,而微分流形又是非光滑的,那么我们就可以有如下的框架构建。”

下一张ppt展示在两人面前。

“第一步,在黎曼流形上建立非光滑分析工具,即在流形上定义广义方向导数和广义梯度。”

“第二步,讨论广义梯度的性质。”

“第三步,在前两步的基础上,讨论黎曼流形上问题(mp)的fritzjohn型最优性条件.”

“第四步,……”

框架早已被菲涅尔教授搭建好。

而程诺在看到那一条条井然有序的过程步骤,有一种醍醐灌顶的感觉。

原来,这个项目,应该这样去做!

www.。m.